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Abstract

Tables of modified X-ray scattering factors for neutral
elements with Z = 70-100 have been calculated using
multiconfiguration Dirac-Fock wave functions. The
physical approximation is a next step beyond the usual
form-factor approximation in calculating elastic scat-
tering photon intensities. Differences as large as 3-6%
compared to previous calculations of the same kind are
obtained; differences from the usual form factors are
much larger.

1. Introduction

The major form of interaction between photons and
atoms, at the X-ray energies of interest in crystal-
lography, is the elastic Rayleigh scattering. For these
nonrelativistic energies, the Rayleigh scattering ampli-
tude is approximated by the form factor of the charge
distribution (Franz, 1935, 1936; Levinger, 1952; Florescu
& Gavrila, 1976). These form factors are the most
important components of the structure factors F(hkl)
used to analyse and interpret the crystallographic data.
A great deal of effort and ingenuity has been invested
in obtaining accurate predictions of the atomic form
factors. Earlier calculations were produced by Freeman
(1959), based on nonrelativistic Hartree—-Fock-Slater
wave functions (Herman & Skillman, 1963), by Cromer
& Waber (1965), using the Dirac-Slater model
(Liberman, Cromer & Waber, 1971), and by Doyle &
Turner (1968), using the relativistic Hatrtree—Fock wave
functions of Coulthard (1967). More recent theoretical
studies were performed by Thakkar & Smith (1992),
including electron correlations by Wang et al. (1993),
starting from nonrelativistic Hartree-Fock wave func-
tions by Rez et al. (1994), using relativistic wave func-
tions and interactions by Wang et al. (1995), including
electron correlations by Meyer et al. (1995), including
electron correlations, and by Wang et al. (1996),
using multiconfiguration Dirac-Hartree-Fock (DHF).
Comprehensive tabulations have been published by
Hubbell et al. (1975) (non-relativistic) and Hubbell
& @verbg (1979) (relativistic), and the standard of
crystallographic usage by Cromer & Waber (1974).
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All of the above effort was concentrated on using
improved wave functions in the calculation of the form
factors. Comparatively much less attention has been
paid to obtaining Rayleigh scattering amplitudes in
formalisms going beyond the form-factor approxima-
tion. The most complete calculations of the Rayleigh
scattering amplitudes are the S-matrix calculations. They
were pioneered by Brown and co-workers (Brown et al.,
1955; Brenner et al., 1955; Brown & Mayers, 1956, 1957)
for pure Coulomb potential fields, improved by Johnson
and co-workers (Johnson & Feiock, 1968; Lin et al., 1975;
Johnson & Cheng, 1976) for self-consistent potential
fields, and continued in a systematic investigation by
Kissel and co-workers (Kissel et al., 1980, 1995; Kissel &
Pratt, 1985; Kane et al., 1986; Roy et al., 1983; Zhou et al.,
1990). These kinds of calculations are extremely difficult
to perform and as such are restricted to particular
electronic shells (K, L, M) and to a restricted number of
elements.

An approximation of considerably less complexity
than the § matrix but representing an improvement over
the form factor (FF) is the modified form-factor (MFF)
approximation (Franz, 1936; Brown & Mayers, 1957),
which takes into account corrections due to the electron
binding and reproduces the zero-angle infinite energy
amplitude calculated by Levinger & Rustgi (1956).
Moreover, expanding MFF in powers of Za, the first two
terms in the Born-approximation calculation of Brown
& Woodward (1952) are also reproduced. A tabulation
of MFFs, based on the wave functions of Liberman,
Cromer & Waber (1971) has been presented by Schaupp
et al. (1983) [a similar tabulation can be found at the
Livermore Laboratory World-Wide Web (WWW) site
http://www.phys.llnl.gov/pub/rayleigh/mftab].

The aim of the present work is to present new
calculations of MFFs based on improved and more
modern wave functions. We used the multiconfiguration
Dirac-Fock package of Grant et al. (1980), which
calculates the exchange terms correctly, giving a
considerable improvement over the local Slater
approximation of Liberman, Cromer & Waber (1971).
Moreover, we used true multiconfigurations, as opposed
to the single configuration used by Schaupp et al. (1983),
and maintained the correct nonrelativistic limit.
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2. Form-factor and modified form-factor approximations

The scattering of a photon by a bound electron is
described by the two Feynman diagrams of Fig. 1. The
corresponding second-order S-matrix scattering ampli-
tude is given by (Akhiezer & Berestetskii, 1965)
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where w is the photon energy, O; = ¢; exp(—Ik; - r) is the

initial electromagnetic field, and [i) is the initial and final
electron state.

In the limit of high energy and small momentum
transfer q = k; — k;, this expression can be simplified to
(Goldberger & Low, 1968)
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where p is the electron momentum and V the potential

seen by the electron. Under the assumption that the
binding energy B, = |E, — mc?|, the potential V and the
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Fig. 1. Feynman diagrams describing the elastic scattering process.

Each diagram corresponds to one of the terms appearing in
equation (1).
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electron momentum p are all much smaller than mc?, the
denominator reduces to mc” and one obtains the form-
factor (FF) approximation

AT = —ry(e,6)f(@) ()

with
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The summation is over all the electronic shells.

In the modified form-factor (MFF) approximation,
the E; — V term is kept and only the c(q-p) term is
dropped:

AMFF
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with

mc
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In terms of linear polarization, the amplitudes are
A = ryh(q)cos6 and A| = ryh(q), with 6 the scattering
angle. h(q) stands for f(g) or g(q) depending on the
approximation employed. The differential cross section
will be:

do

o= ™)

= 3(A] +A7).

3. MFF calculations

As stated before, the wave functions were calculated
with the multiconfiguration Dirac-Fock package of
Grant et al. (1980). In a recent calculation of form
factors by Wang et al. (1996), a point was made that it is
necessary for the wave functions employed to approach
the correct nonrelativistic limit when ¢ — oo. This is so
for closed shells, when only a single configuration is
present. For open shells, when more than one relativistic
configuration corresponds to the nonrelativistic term,

RRG
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Differences in %
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Fig. 2. Differences, in percent, compared with the FF calculations of
Rez et al. (1994) (RRG) and the MFF calculations of Schaupp et al.
(1983) (SSSRH).
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one has to consider all the relativistic configurations in
order to obtain the desired nonrelativistic limit. The
wave functions were calculated in the OL mode when
only one configuration was present (i.e. optimizing the
single atomic level energy), and in the EOL mode when
more than one relativistic configuration was considered
(i.e. the optimization was performed on a number of
atomic levels, but no more than ten at once). The
nonrelativistic ground-state terms, used to decide
which relativistic configurations to employ, were taken
from the WWW site of Sheffield University (http:/
www.shef.co.uk/chem/web-elements). They are men-
tioned in the tables together with the number of
relativistic configurations generated.

A consequence of using the Dirac-Fock program is
that the potential appearing in equation (6) is different
for each shell. This is distinct from the case of Slater-
type exchange, where the potential is universal for all
the electrons.

The present work may be compared with the work of
Rez et al. (1994) (RRG), who used the same type of
wave functions but calculated the FFs, and with that of
Schaupp et al. (1983) (SSSRH), who calculated MFFs
but used single-configuration Slater-type exchange. In
Fig. 2, we present a comparison of the present calcula-
tions for uranium with those of RRG and SSSRH. As
expected, the differences, in percent, with respect to
RRG are quite large, climbing rapidly to 8% at 4 A™",
This is to be expected because of the different physics
involved in the two types of calculations. Even
compared to SSSRH, we observe a 1.5% average
difference over most of the interval. According to
equation (7), a 1.5% difference in the scattering ampli-
tude corresponds to 3—-6% differences in the scattering
cross sections (Le. in the expected X-ray scattering
intensities). The smallest difference is at 8 = 90° scat-
tering where cosd =0 and only the A, amplitude
contributes. The maximum difference is at & = 0° scat-
tering, where both A, and A contribute fully.

In Table 1, we present a small sample of the calcula-
tions. The full calculations, for all the elements in the Z =
70-100 interval and for an extended range of sin(6/2)/A,
have been deposited.7

4. Conclusions

We have presented a tabulation of the modified X-ray
sattering factor for all the neutral elements with Z = 70—
100. This approximation is believed to be a better one
than the usual form-factor approximation in describing
the elastic scattering of X-rays from bounded electrons.
We have also improved on a previous tabulation of the
same quantities by employing better wave functions in

+ Supplementary data for this paper are available from the IUCr
electronic archives (Reference: HR0040). Services for accessing these
data are described at the back of the journal.

MODIFIED X-RAY SCATTERING FACTORS

Table 1. Modified form factors

Elemental notation, atomic number Z, ground-state term and the
number of relativistic configurations (rel. config.) used in the
calculations are specified.

Pa (*Kyy ) U (L) Np (Lyy0)
sin(0/2)/x 13 rel. config. 44 rel. config. 126 rel. config.
(A Z=091 Z=9 Z=93
0.00 89.6769 90.7123 91.6773
0.01 89.5975 90.6339 91.6007
0.02 89.3630 90.4020 91.3746
0.03 88.9843 90.0270 91.0083
0.04 88.4774 89.5246 90.5166
0.05 87.8621 88.9138 89.9175
0.06 87.1597 88.2153 89.2302
0.07 86.3905 87.4489 88.4739
0.08 85.5730 86.6328 87.6658
0.09 84.7225 85.7822 86.8206
0.10 83.8511 84.9091 85.9503
0.11 82.9677 84.0226 85.0639
0.12 82.0786 83.1290 84.1677
0.13 81.1876 82.2325 83.2663
0.14 80.2973 81.3357 82.3624
0.15 79.4092 80.4402 81.4580
0.16 78.5241 79.5467 80.5543
0.17 77.6425 78.6561 79.6521
0.18 76.7650 77.7688 78.7521
0.19 75.8922 76.8852 77.8551
0.20 75.0245 76.0061 76.9617
0.22 73.3080 74.2642 75.1896
0.24 71.6221 72.5500 73.4435
0.26 69.9738 70.8709 71.7314
0.28 68.3694 69.2338 70.0607
0.30 66.8135 67.6443 68.4376
0.32 65.3089 66.1062 66.8664
0.34 63.8569 64.6214 65.3495
0.36 62.4570 63.1904 63.8880
0.38 61.1077 61.8121 62.4811
0.40 59.8065 60.4847 61.1272
0.42 58.5505 59.2054 59.8240
0.44 57.3367 57.9714 58.5686
0.46 56.1620 56.7796 57.3580
0.48 55.0237 55.6269 56.1892
0.50 53.9190 54.5106 55.0591
0.55 51.2908 51.8630 52.3865
0.60 48.8340 49.3967 49.9056
0.65 46.5332 47.0914 47.5923
0.70 44.3792 44.9345 45.4309

the relativistic multiconfiguration mode with a proper
nonrelativistic limit.
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